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Report

Disentangling Fetal and Maternal Susceptibility for Pre-Eclampsia: A British
Multicenter Candidate-Gene Study
The GOPEC Consortium

The Genetics of Pre-Eclampsia (GOPEC) collaboration aims to identify genetic factors in U.K. families affected by
pre-eclampsia. A number of genetic studies have reported associations with pre-eclampsia, but attempts to replicate
these findings have yielded inconsistent results. We describe the results of extensive genotyping of seven candidate
genes previously reported as conferring susceptibility to pre-eclampsia. Six hundred fifty-seven women affected by
pre-eclampsia and their families were genotyped at 28 single-nucleotide polymorphisms in the genes encoding
angiotensinogen, the angiotensin receptors, factor V Leiden variant, methylene tetrahydrofolate reductase, nitric
oxide synthase, and TNFa. Genotypes were analyzed by the transmission/disequilibrium test. Genotype risk ratios
(GRRs) associated with maternal genotypes had a range of 0.70–1.16; GRRs associated with fetal genotypes had
a range of 0.72–1.11. No GRR achieved the prespecified criteria for statistical significance (posterior probability
1.05). We conclude that none of the genetic variants tested in this large study of strictly defined pre-eclamptic
pregnancies confers a high risk of disease. The results emphasize the importance of conducting rigorously designed
studies of adequate size to provide precise genetic risks with narrow confidence intervals, if overreporting of false-
positive results is to be avoided.

Pre-eclampsia (MIM 189800), identified clinically by ma-
ternal hypertension and proteinuria occurring after the
20th wk of gestation, affects ∼3% of pregnancies in
Western populations (Lie et al. 1998). Both maternal
and fetal genes appear to play an etiological role; a recent
analysis of 700,000 pregnancies from the Swedish Birth
Registry estimated the heritability conferred by maternal
genes as 0.35 (95% CI 0.33–0.36) and that due to fetal
genes as 0.20 (95% CI 0.11–0.24) (Pawitan et al. 2004).

Genes that have been implicated in pre-eclampsia in-
clude angiotensinogen (AGT) (Ward et al. 1993), the type
1 and type 2 angiotensin receptors (AGTR1 and AGTR2)
(Morgan et al. 1998; Plummer et al. 2004), tumor ne-
crosis factor a (TNF) (Chen et al. 1996), endothelial
nitric oxide synthase (NOS3) (Yoshimura et al. 2000),
methylene tetrahydrofolate reductase (MTHFR) (Sohda
et al. 1997), and the Leiden variant of coagulation factor
V (F5) (Dizon-Townson et al. 1996). Results have not
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been consistently reproducible, and few studies have ad-
dressed the role of the fetal genotype. It is therefore
important to establish the contribution of maternal and
fetal genes in a large study with adequate statistical
power to detect modest genotype relative risks with nar-
row CIs.

The Genetics of Pre-Eclampsia (GOPEC) study, a con-
sortium of researchers from 10 U.K. universities, re-
cruited women affected by pre-eclampsia and their fami-
lies from 2000 to 2003. We used transmission/disequi-
librium testing (TDT) to distinguish between maternal-
and fetal-gene effects (Mitchell 1997) and to eliminate
confounding due to population stratification (admix-
ture). All volunteers gave informed consent for the study,
which was approved by the Trent Multicentre Research
Ethics Committee. White western European women with
pre-eclampsia, recruited at the time of diagnosis, were
eligible for participation in the study if, after the 20th
wk of pregnancy, their systolic blood pressure rose to
�140 mm Hg and their diastolic blood pressure rose to
�90 mm Hg on two occasions measured within 24 h
and if they had proteinuria 1500 mg per 24 h or 2� (1
g/liter) on dipstick testing of urine. Women who were
hypertensive or had proteinuria prior to the 20th wk of
pregnancy were excluded, as were those with essential
hypertension, diabetes, renal or cardiac disease, or a cur-
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Table 1

Clinical Features of 627 Index Pregnancies

Feature 5th Percentile Median 95th Percentile

Maternal age (years) 19.9 29.7 38.4
Maternal BMI (kg/m2) 20.37 27.01 38.60
Highest SBPa (mm Hg) 140 161 199
Highest DBPb (mm Hg) 98 110 126
Highest proteinuria (g/24 h)c .50 1.67 9.59
Gestation at delivery (wk) 28 37 41
Infant birth weight (kg) .90 2.56 3.89
Birth weight percentiled 0 11 89

a SBP p systolic blood pressure.
b DBP p diastolic blood pressure.
c 24-h protein results were available for 364 women.
d Calculated using GROW freeware (West Midlands Perinatal In-

stitute Web site).

Table 2

Comparison of 627 Index Pregnancies

Feature
No. (%) of Index

Pregnancies

Maternal parity:
Nulliparous 496 (79.1%)
Parous 131 (20.9%)

Sex of infant:
Male 320 (51.0%)
Female 307 (49.0%)

Resolutiona:
Resolved 558 (89.0%)
Unresolved 69 (11.0%)

a Resolution p diastolic blood pressure
!90 mm Hg and no proteinuria 13 wk
postpartum.

rent multiple pregnancy. Pre-eclampsia was defined as
unresolved if hypertension or proteinuria persisted 13
wk after delivery. Details of recruitment protocols are
available at the GOPEC Web site.

DNA was extracted from venous blood from adult
participants by use of Promega Wizard DNA extraction
kits. Fetal DNA was extracted from umbilical cord tissue
by use of Nucleon HT kits (Amersham Biosciences).
Haplotype tagSNPs with minor-allele frequencies (MAF)
10.05 were selected from bins in linkage disequilibrium
( ) with data from the SeattleSNPs database or2r 1 0.64
published data (Nakajima et al. 2002; Plummer et al.
2004). tagSNP maps generated by complete-gene re-
sequencing were available for AGT, TNF, and NOS3;
this strategy for tagSNP selection is expected to capture
180% of common haplotype diversity in these genes
(Carlson et al. 2004). tagSNP maps for AGTR1 and
AGTR2 were less complete and included flanking and
exonic regions only. Two SNPs in MTHFR and one SNP
in F5 were selected on the basis of their functional effects
(Bertina et al. 1994; Frosst et al. 1995; van der Put et
al. 1998). Genotyping was undertaken using TaqMan 5′

exonuclease probes; assay details are available on re-
quest. Nineteen percent of samples were genotyped in
duplicate, and genotyping was confirmed by DNA se-
quencing of a random selection of samples. The geno-
typing failure rate was 0.8%, and the genotyping rep-
lication rate was 99.4%.

An affected woman and her parents, or one parent
and one or more siblings, formed a maternal triad for
TDT of maternal genes. An affected woman, her partner,
and baby formed a fetal triad for testing of fetal genes.
Mendelian segregation inconsistencies, identified using
PedCheck (O’Connell and Weeks 1998), may be due to
either miscalling of marker alleles or incorrect informa-
tion about family structure (e.g., nonpaternity or un-
reported ovum donation); incorrect information about
family structure will reduce the power of detecting true
genetic effects (Gordon et al. 1999). The information

from the 28 segregating markers was used to exclude
relationships on the basis of two or more discrepant
genotypes (Chakraborty and Stivers 1996). Under the
assumption that the probability of detecting a relation-
ship inconsistency with one typically informative bial-
lelic marker is .15 (Jamieson and Taylor 1997) and that
the prior probability of nonpaternity/nonmaternity is
�10%, then the posterior probability of failing to detect
these inconsistent relationships using this “two strikes
and you are out” rule is �0.7%. Maternal or fetal triads
with a single SNP showing inconsistencies with Mende-
lian inheritance were not included in the statistical analy-
sis of this specific marker; we assume that isolated seg-
regation inconsistencies can be attributed to occasional
genotype miscalls. From 657 families, 14 maternal and
26 fetal triads, which had more than one SNP genotyp-
ing result that was inconsistent with Mendelian inher-
itance, were excluded from further statistical analysis.
Six hundred twenty-seven families remained, comprising
2,504 individuals, including 398 maternal triads and 536
fetal triads. Clinical features are shown in tables 1 and
2.

No deviations from Hardy-Weinberg equilibrium in
founder individuals were detected using PedStats soft-
ware (Center for Statistical Genetics Web site). To ana-
lyze phase-uncertain data and to study single markers
or extended marker haplotypes for linkage in the pres-
ence of gene association, the TRANSMIT program was
used (Clayton 1999), which implements a score test sta-
tistic that omits terms that are sensitive to population
stratification. The bootstrap option was used to empir-
ically evaluate the significance of the test statistics. Hap-
lotypes with an estimated frequency of �1% were pooled
for statistical analysis. Estimates of the genetic-effect
size, expressed as genotype risk ratios (GRRs), (and stan-
dard errors of these estimates) were calculated from the
proportion of transmitted risk alleles (Kazeem and Far-
rall 2005).

The results of genotyping are shown in table 3. In
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Table 3

Results of Analysis of Maternal and Fetal SNP Genotypes by TDT

GENE, GENBANK REFERENCE

SEQUENCE, AND HGVSa NAME

ALTERNATIVE

NAME LOCATION

MATERNAL GENOTYPE FETAL GENOTYPE

MAF GRR 95% CI P MAF GRR 95% CI P

AGT:
AY436323:

g.1718GrT �1074GrT 5′ flanking .11 .97 .74–1.27 .815 .11 1.04 .79–1.37 .785
g.2963CrT 172CrT Intron 1 .08 1.16 .83–1.63 .392 .08 .82 .60–1.11 .197
g.3467GrA 676GrA Intron 2 .37 .99 .82–1.19 .913 .36 .90 .75–1.08 .261
g.3826GrA 1035GrA Intron 2 .25 1.00 .81–1.23 .997 .24 .91 .75–1.12 .375
g.6679CrT 174ThrrMet Exon 2 .12 .84 .64–1.09 .185 .12 .92 .71–1.19 .519
g.6862TrC 235MetrThr Exon 2 .40 .94 .78–1.13 .505 .40 .92 .77–1.10 .349
g.8854CrA 6066CrA Intron 3 .20 1.06 .84–1.33 .625 .19 .95 .77–1.18 .649
g.14321CrA 11535CrA 3′ UTR .31 .95 .78–1.15 .583 .32 .99 .82–1.18 .882

AGTR1:
AF245699.1:

g.4955TrA �810TrA 5′ flanking .20 1.10 .88–1.38 .410 .19 1.08 .87–1.35 .495
g.5245CrT �521CrT 5′ flanking .35 .91 .75–1.09 .309 .32 .88 .73–1.05 .144
g.49465CrT 573CrT Exon 5 .45 .98 .82–1.18 .848 .46 .95 .80–1.13 .569
g.50058ArC 1166ArC 3′ UTR .31 1.01 .83–1.22 .957 .31 1.01 .85–1.21 .883

AGTR2:
AY324607.1:

g.2184ArT 333ArT Intron 2 .28 .72 .52–.98 .039 .26 1.05 .79–1.40 .720
g.4673GrT 2812GrT 3′ UTR .22 .70 .48–1.00 .054 .22 .72 .52–.98 .038
g.4679GrA 2818GrA 3′ UTR .46 1.09 .80–1.47 .590 .44 1.06 .82–1.37 .655

F5:
NM_000130:

c.1691GrA Leiden Exon 10 .02 1.09 .59–2.07 .779 .02 .85 .47–1.48 .561
MTHFR:

AY338232:
g.8747CrT 677CrT Exon 4 .33 1.04 .85–1.26 .723 .34 1.05 .88–1.25 .609
g.10649ArC 1298ArC Exon 7 .30 .92 .76–1.12 .419 .29 .87 .72–1.05 .141

NOS3:
AF519768:

g.450TrA �1474TrA 5′ flanking .39 1.12 .93–1.35 .248 .38 .98 .82–1.17 .824
g.3497GrA … Intron 2 .14 1.13 .87–1.48 .355 .15 1.11 .86–1.43 .431
g.7164GrT 298GlurAsp Exon 7 .35 .93 .77–1.12 .455 .35 1.06 .88–1.28 .529
g.9932GrA … Intron 11 .46 1.03 .86–1.23 .724 .43 .87 .73–1.03 .116
g.13834CrA … Intron 13 .36 .96 .80–1.16 .676 .37 1.05 .88–1.26 .557
g.17971ArG … Intron 19 .24 .88 .71–1.08 .220 .23 .88 .72–1.08 .215

TNF:
AY066019:

g.282GrA �308GrA 5′ flanking .20 1.01 .81–1.26 .954 .18 .92 .73–1.14 .437
g.1893ArG … Intron 3 .08 .86 .62–1.19 .362 .08 .73 .53–.99 .044
g.4101GrA … 3′ flanking .15 .98 .76–1.25 .860 .12 .85 .66–1.10 .220
g.4765GrT … 3′ flanking .08 1.16 .82–1.65 .402 .08 1.04 .75–1.43 .833

NOTE.—Results with statistical probability �.05 are shown in bold italics.
a HGVS p Human Genome Variation Society.

maternal triads, two SNPs in AGTR2, g.2184ArT and
g.4673GrT, demonstrated marginally decreased trans-
mission of the minor allele ( and ,P p .039 P p .054
respectively). Maternal GRRs associated with minor vari-
ants at the remaining 26 SNPs fell within the range of
0.84–1.16. Analysis of fetal triads demonstrated weak
evidence of transmission disequilibrium at g.4673GrT
in AGTR2 ( ) and at g.1893ArG in TNFP p .038
( ). GRRs associated with fetal genotype at theP p .044
remaining 26 SNPs were in the range of 0.82–1.11.

The results of haplotype analysis are shown in table
4. There was weak support for transmission disequi-

librium in fetal triads with TNF haplotypes ( )P p .026
and with the AGT haplotypes defined by g.6862TrC
(235MetrThr) and g.3467GrA, with the common
235Met-g.3467G allele being overtransmitted (P p

)..027
We have analyzed our gene-association results within

a Bayesian framework (Colhoun et al. 2003; Wacholder
et al. 2004), which interprets the statistical significance
of the results in the context of the prior probability that
a candidate gene encodes disease susceptibility. The study
was designed to detect moderately sized gene associa-
tions; the cohorts of 398 maternal trios and 536 fetal
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Table 4

Results of Analysis of Maternal and Fetal Haplotypes

GENE

HAPLOTYPE ANALYSIS

Maternal Fetal

x2 df P x2 df P

AGTa 3.56 3 .217 9.41 3 .027
AGTR1 6.78 9 .773 11.11 9 .305
AGTR2 6.12 3 .106 4.77 3 .189
MTHFR 2.30 3 .280 3.22 3 .173
NOS3 13.95 11 .232 19.86 11 .237
TNF 1.64 5 .898 10.49 5 .026

NOTE.—P values are empirical values generated using
the bootstrap option of the TRANSMIT software. Results
with statistical probability �.05 are shown in bold italics.

a The computational complexities of estimating 8-
marker haplotypes precluded the use of all markers for
AGT in a single analysis. All possible pairs of markers for
this gene were examined, and the most significant asso-
ciations are shown. Markers are g.2963CrT and
g.8854CrA (maternal haplotypes) and g.6862TrC
(235MetrThr) and g.3467GrA (fetal haplotypes). Ad-
dition of a third marker did not increase statistical
significance.

trios have 85% power to detect common ( )MAF p 0.5
susceptibility genes with GRRs of 1.6 and 1.5, respec-
tively, with the assumption of a type 1 error rate of
0.0005. This nominal level of significance is sufficiently
stringent for detection at the 5% level of noteworthy
effects of candidate genes with modest prior probabilities
(�.01). The power of the study will inevitably be re-
duced for smaller GRRs, rarer SNPs, low levels of link-
age disequilibrium between markers and susceptibility
allele(s), or reduced prior probabilities (!.01) of gene
association.

None of the examined individual SNPs or haplotypes
achieved statistical significance by use of these criteria
(posterior probability 1.05). Genotypes and haplotypes
were examined in the subgroup of nulliparous pregnan-
cies in which hypertension and proteinuria had resolved
by 13 wk postpartum, comprising 296 maternal triads
and 383 fetal triads. GRRs were similar to those in the
full data set, and none achieved statistical significance
(posterior probability 1.05).

This study of a large and very precisely phenotyped
group of pregnancies excludes major risks associated
with a number of SNPs in candidate genes that have
dominated studies of the genetics of pre-eclampsia. The
challenge remains to identify susceptibility genes that
will provide greater understanding of the pathogenesis
of pre-eclampsia. It is essential to study large numbers
of affected women and their babies if misleading results
are to be avoided. The formation of national or inter-
national consortia is one way forward. In addition, the
adoption of clear definitions of phenotype and inclusion
and exclusion criteria will facilitate meta-analysis of rep-
licated studies.
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